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Summary 
A ship’s fuel consumption can be significantly increased when sailing in harsh sea 
conditions. Any measures to increase ship energy efficiency must rely on accurate 
description of the ship’s performance. Current theoretical physical models always contain 
large uncertainties to describe a ship’s energy performance especially in the mechanical 
system models. Some black-box performance models have been constructed by machine 
learning methods based on ship performance data. But the black box models can be only 
useful for a specific ship with data inputted for the model construction.  

This project first investigates the enhancement of ship manoeuvring models through the 
integration of prior knowledge embedded in parametric model structures and 
semiempirical formulas. The study begins with a pre-study focusing on one degree of 
freedom in ship roll motion, aiming to develop parameter identification techniques and 
propose a parametric model structure with good generalization. This knowledge is then 
extended to the manoeuvring problem, with objectives including the development of 
parameter identification techniques for ship manoeuvring models, proposing a 
generalizable parametric model structure, mitigating multicollinearity, and identifying 
added masses. Methodologically, the research employs various parametric model structures 
for roll motion and manoeuvring, investigated through free running model tests and virtual 
captive tests (VCT). A novel parameter identification method combining inverse dynamics 
with an extended Kalman filter (EKF) is proposed. Additionally, a deterministic semi-
empirical rudder model is introduced to address multicollinearity issues. The implications 
of this research suggest that integrating semi-empirical rudder models and utilizing VCT 
can significantly enhance the accuracy and generalization of ship manoeuvring models, 
contributing to more reliable and physically accurate simulations in maritime engineering.   

Based on the experiences of building various gray-box models for ship dynamics, the 
knowledge is used to study ship energy performance models with the applications of two 
case study ships, one on unconventional doubled-ended vessel, and the other on short sea 
shipping. Based on their data analytics and gray-box models describe those ship’s energy 
performance, a Bayesian based ship voyage planning decision support system was 
developed during the project. It is demonstrated that the data analysis enhanced decision 
support system can reduce fuel consumption from 5-10% dependent on the voyages used 
for those two case study vessels. 

Finally, the project leads to a PhD thesis and several scientific publications related to both 
modelling of ship dynamics and shipping energy efficiency. Numerical simulation analysis 
data, experimental test data and full-scale measurement data are used in this project to 
study different choice of modelling techniques. 
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Sammanfattning 
Ett fartygs bränsleförbrukning kan ökas avsevärt när man seglar i tuffa sjöförhållanden. 
Alla åtgärder för att öka fartygets energieffektivitet måste förlita sig på korrekt beskrivning 
av fartygets prestanda. Aktuella teoretiska fysiska modeller innehåller alltid stora 
osäkerheter för att beskriva ett fartygs energiprestanda, särskilt i de mekaniska 
systemmodellerna. Vissa black-box-prestandamodeller har konstruerats med 
maskininlärningsmetoder baserade på fartygsprestandadata. Men black box-modellerna kan 
bara vara användbara för ett specifikt fartyg med data inmatad för modellkonstruktionen. 

Detta projekt undersöker först förbättringen av fartygsmanövreringsmodeller genom 
integrering av förkunskaper inbäddade i parametriska modellstrukturer och semiempiriska 
formler. Studien inleds med en förstudie med fokus på en frihetsgrad i fartygets 
rullningsrörelse, med syfte att utveckla parameteridentifieringstekniker och föreslå en 
parametrisk modellstruktur med god generalisering. Denna kunskap utökas sedan till 
manövreringsproblemet, med mål som inkluderar utvecklingen av 
parameteridentifieringstekniker för fartygsmanövreringsmodeller, föreslå en generaliserbar 
parametrisk modellstruktur, mildra multikollinearitet och identifiera extra massor. 
Metodologiskt använder forskningen olika parametriska modellstrukturer för rullrörelse 
och manövrering, undersökta genom frilöpande modelltester och virtuella captive-tester 
(VCT). En ny metod för parameteridentifiering som kombinerar inversdynamik med ett 
utökat Kalmanfilter (EKF) föreslås. Dessutom introduceras en deterministisk semi-
empirisk rodermodell för att ta itu med multikollinearitetsproblem. Implikationerna av 
denna forskning tyder på att integrering av semi-empiriska rodermodeller och användning 
av VCT avsevärt kan förbättra noggrannheten och generaliseringen av 
fartygsmanövreringsmodeller, vilket bidrar till mer tillförlitliga och fysiskt exakta 
simuleringar inom sjöfartsteknik. 

Baserat på erfarenheterna av att bygga olika grå-box-modeller för fartygsdynamik, används 
kunskapen för att studera fartygs energiprestandamodeller med tillämpningar av två 
fallstudiefartyg, ett på okonventionella dubbelsidiga fartyg och det andra på närsjöfart. 
Baserat på deras dataanalys och grå-box-modeller beskriver dessa fartygs energiprestanda, 
utvecklades ett Bayesianskt baserat beslutsstödssystem för fartygsresaplanering under 
projektet. Det har visat sig att det förbättrade beslutsstödssystemet för dataanalys kan 
minska bränsleförbrukningen från 5-10% beroende på de resor som används för dessa två 
fallstudiefartyg. 

Slutligen leder projektet till en doktorsavhandling och flera vetenskapliga publikationer 
relaterade till både modellering av fartygsdynamik och sjöfartens energieffektivitet. 
Numeriska simuleringsanalysdata, experimentella testdata och fullskaliga mätdata används i 
detta projekt för att studera olika val av modelleringstekniker.  
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1 Introduction 

There are many scenarios where constructing a model of a ship is beneficial. For instance, 
a digital twin is a kind of dynamic model as a real-time digital replica of a physical ship. It 
continuously receives data from its physical counterpart through sensors. The concept 
originated from NASA's efforts to improve the physical-model simulation of spacecraft. 
Today, digital twins are used in many industries, including manufacturing, urban planning, 
healthcare, and more. They help organizations simulate real-world scenarios and make 
better decisions by providing real-time data and insights. A virtual prototype is like the 
digital twin model but primarily used for simulation and testing during the design phase. It 
does not necessarily receive real-time data from a physical counterpart – so it can be used 
before the real ship exists. 

The fundamental concept of a model is to predict outcomes that might be too dangerous, 
difficult, or costly to test with an actual ship. For instance, when evaluating millions of 
alternative scenarios during optimization, a cost-efficient model is crucial. Building a model 
before constructing the real ship is a prudent approach, like how an architect creates a 
model of a house before construction Fig.1.1. Scale model testing at facilities such as the 
RISE SSPA Maritime Center is often conducted before ships are built to investigate ship 
dynamics. However, this process is costly and time-consuming, and the facilities have 
inherent physical constraints that may limit the comprehensive study of ship dynamics. 

 

Figure 1.1 RISE SSPA Maritime Center. 

Instead, a more theoretical approach is adopted. Computational fluid dynamics (CFD) 
describes the hydrodynamics of ships based on fundamental physics principles. However, 
there are many situations where CFD is not feasible. The calculations might be too 
expensive, or the geometries, calculation domain, or boundary conditions might not be 
defined with sufficient accuracy. Therefore, in many situations, we must accept the lack of 
a complete physical understanding of the system and instead use a data-driven model that 
mimics the system's behaviour from observations. This project has investigated such data-
driven models. Appropriate mathematical model structures to describe the underlying 
physics have been established, and methods to identify them from either CFD calculations 
or recorded ship trajectories have been proposed. 

The term “model” is frequently used in this report, but it carries different meanings across 
various engineering disciplines. To avoid confusion, this report adopts a more precise 
definition by distinguishing between “model structure” – defined for mathematical models 
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by “model equations” – and “identified model”, which refers to the complete model, 
including the identified parameters within the model equations. 

Model structures are often categorized in the literature as either parametric models 
(Fig.1.2) or non-parametric models (Fig.1.3). A third category, hybrid models, combines 
parametric models with non-parametric models. The following definitions have therefore 
been adopted in this project: if the model structure is defined by explicit mathematical 
formulas that have parameters in it, it is categorized as a parametric model; all other model 
structures are categorized as either non-parametric or hybrid models. 

 

Figure 1.2, Example of a parametric model. 

 

Figure 1.3, Example of a non-parametric model. 

Multicollinearity refers to a situation in statistical modelling where two or more predictor 
variables are highly correlated, making it difficult to isolate the individual effects of each 
predictor on the dependent variable. An example is when the ship has a drift angle so that 

the total side force 𝑌 acting on the ship from the oblique flow generates lift forces on both 

the hull 𝑌𝐻 and the rudder 𝑌𝑅, as shown in Fig.1.4. The hull force and rudder force will be 
highly correlated in this situation, and it will be hard to identify their individual 
contributions when only the total force is measured. This issue is particularly relevant in 
the field of ship modelling, where numerous hydrodynamic coefficients and parameters are 
involved. The higher correlations of parameters are, or the stronger multicollinearity exists, 
the more difficult it is to identify regression coefficients separately (Yoon and Rhee, 2003). 
Yaw rate and drift angle are correlated during manoeuvres, as shown in Fig.1.5, which 
makes it difficult to separate their influences. The best option to mitigate multicollinearity 
is to get more informative data with persistence of excitation including conditions where 
the input signals used in system identification are sufficiently rich in frequency content to 
excite all the modes of the system. This ensures that the system’s response contains 
enough information to uniquely identify the system parameters. Without persistence of 
excitation, the identified model may not accurately represent the ship’s behavior in all 
scenarios. For instance, even though there might be millions of datapoints available, if 
nothing has happened for a long time, the data is not very informative and cannot be used 
to identify a model. 
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Figure 1.4, Multicollinearity between hull and rudder forces. 

 

Figure 1.5, Yaw rate and drift angle are correlated during zigzag manoeuvring tests. 

1.1 Motivation and objectives 

System identifications of parametric models has been conducted since the late 1970s from 
free running tests, and for even longer times from captive tests. The first papers about 
non-parametric models were published in the late 1990s, with an increasing popularity 
during the past 15 years, especially within the field of autonomous vessels. Today there are 
still papers being published about both these approaches, so there seems to be no 
consensus which one is the better. Further progress within machine learning can be 
expected within the coming years, with a bright future for the non-parametric models and 
the hybrid approaches. The lack of informative data and persistence of excitation will 
however remain a big challenge.  

One aspect of indirect informative data that is often overlooked is the prior knowledge 
about ship hydrodynamics from previous experimental works and other physical insights. 
This indirect informative data is often embedded in the parametric model structures, 
which parameters should be included or excluded from a model have often been chosen 
with careful consideration from experimental works or physical reasoning. There are also 
semi-empirical formulas in the literature that could potentially be used to add more 
informative data. This is a subject that needs further investigation, and the research 
question of this project has therefore been formulated in the following way: 

• How should prior knowledge embedded in parametric model structures and 
semiempirical formulas be used to enhance the generalization of ship models? 

• How can the models/knowledge be utilized to increase shipping energy efficiency? 
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To provide a clear path through this research, the research questions have been broken 
down into the following work tasks/subjects, including develop parameter identification 
techniques for roll motion models with good generalization based on prior knowledge 
from model tests, develop parameter identification techniques for ship manoeuvring 
models by applying different data analytics and machine learning modelling techniques to 
investigate the problems of multicollinearity, generalization and integration of 
semiempirical formulas for data-driven models, as well as what decision support system to 
be combined with maritime data analytics and machine learning modelling to increase 
shipping energy efficiency. 

1.2 Assumptions and limitations 

For the first part of the project, i.e., to create physics-informed models for ship dynamics, 
the ship’s dynamics are described by the motion of the ship and the forces that cause this 
motion. Modelling of the ship dynamics for a ship at sea is a very complex task that 
involves large uncertainties regarding the environmental conditions from the wave, winds 
and currents. The ship’s dynamics has therefore been studied in calm water conditions, as 
a simplification in this project. This addresses the manoeuvring performance of the ship, 
where the calm water dynamics can be studied in isolation from the remaining 
components at sea.   

Since a ship’s dynamics is closely related to the energy consumption and controllability of 
the ship, data analytics and machine learning are used to demonstrate their applications to 
increase shipping energy efficiency. In this project, only two case study ships, i.e., one 
double ended vessel, and one short sea shipping vessel, are used in this study. Weather 
conditions are assumed to be known for the decision support of energy efficient ship 
operations. 

2 Model structures of ship dynamics 

The model structures in this project are expressed as memory-less state space models, 
following the Markov process assumption. This assumption implies that the forces acting 
on the ship at each time instant depend only on the current state – so that previous events 
do not affect the current state. The state space model can therefore express the change of 

state 𝒙̇ from the current state vector 𝒙 and the input vector 𝒖 through the transition 

function 𝑓(𝒙, 𝒖): 

𝑥̇ = 𝑓(𝑥, 𝑢) 

The change of state, estimated by the transition function, can be used to simulate the ship 
motions with time integration. The position and orientation, velocities and turning rate 

defines the state of the ship in three degrees of freedom 𝒙 = [𝑥0, 𝑦0, Ψ, 𝑢, 𝑣, 𝑟]𝑇 as shown 

in Fig. 2.1. The ship kinematics can be expressed as function of a velocity vector 𝝊 =
[𝑢 𝑣 𝑟]𝑇 .  
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Figure 2.1, Relations between the earth fixed and ship fixed reference frames, showing the velocities and 
forced in the ship fixed frame. 

The ship acceleration 𝝊̇ is expressed with the inverse mass matrix 𝑴−𝟏 and force vector 𝑭  
through the equation of motion. 

𝝊̇ = 𝐌−𝟏𝐅 

The ship acceleration vector 𝝊̇ can be used together with the global velocities 𝑥0̇, 𝑦0̇, and r 
to form the transition function. 

𝑓(𝒙, 𝒖) = [𝑥0̇, 𝑦0̇, r, 𝝊̇]𝑇 

The system identification can now be split into the problem of determine the mass matrix 

𝑴 and the problem to determine a parametric model of the forces 𝐅 acting on the ship as 
explained in the next section. 

 

2.1 Parameter identification  

The rigid body part of the mass matrix was determined by swing tests in air and the added 
masses were determined with potential flow calculations. In this project, the force models 
were identified from either captive test (CT) or the free-running test (FT). Captive model 
tests (CMT) are the classical way of conducting captive tests, which can be performed in 
various ways: with an XY-carriage, rotating arm, or planar motion mechanism (PMM). CT 
can also be performed with CFD in virtual captive tests (VCT). FT data are collected from 
either model tests full-scale tests, or operational data. CT data is generally more applicable 
in virtual prototyping when assessing the manoeuvring performance before ships are built. 
FT data, on the other hand, are generally more applicable for existing ships, in a digital 
twin context. 

2.2 System identification from captive tests 

Because of the Markov assumption, the force model 𝑚 can be expressed as a function 

surface of the input velocities, rudder angle 𝛿, and the propeller thrust 𝑇. 
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𝐹 = [𝑋𝐷, 𝑌𝐷, 𝑁𝐷]𝑇  =  𝑚(𝑢, 𝑣, 𝑟, 𝛿, 𝑇) 

The inputs are varied during the captive tests to identify the function surface as shown in 
Fig. 2.2. The function surface is assumed to be expressible with a predefined model 
structure, containing a set of polynomials to express the forces. There are a many such 
mathematical models proposed in the literature (Abkowitz, 1964; Nomoto et al., 1957; 
Norrbin, 1971; Yasukawa and Yoshimura, 2015). The data from the captive tests is used to 
identify the parameters within the mathematical force model with linear regression. 

 

Figure 2.2, Forces obtained from captive tests. 

 

2.3 System identification from free running tests 

Unlike the captive test, free running test cannot measure the forces directly. The forces 
were instead estimated by using the equation of motion to calculate the inverse dynamics. 

𝐅 = 𝐌𝝊̇ 

The acceleration vector 𝝊̇ was estimated by an extended Kalman filter. An example of the 
inverse dynamics forces is shown in Fig. 2.3, where the forces during a turning circle 
manoeuvre have been estimated. The estimated forces can be used to identify a force 
model in a similar way as the captive test, which is referred to as inverse dynamics 
regression. 
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Figure 2.3. Forces and moments calculated by inverse dynamics on data from a turning circle test. 

3 Model structure for ship power performance model 
A ship’s energy performance model is necessary to evaluate the energy costs in any energy 
efficiency shipping measures. The general procedure for such a ship energy performance 
model, i.e., predict ship speed from marine engine power, or predict engine power from 
ship speed, can be estimated physically as presented in in Fig.3.1.  

 

Figure 3.1. A general ship energy consumption estimation process. 

Based on the ship’s speed through water V, by combining the ship’s characteristics and the 
encountered sea conditions, the total resistance RTotal is first obtained. The propulsion 
power Ps can then be calculated based on the effective power from propeller against the 
resistance RTotal, engine configurations, and propeller efficiencies. And in the end, the fuel 
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cost Fc is obtained based on Ps and Specific Fuel Oil Consumption (SFOC), representing 
the efficiency of the ship engine. The following relationships between Fc, Ps and SFOC 
generally applies: 

𝐹𝑐  =  𝑃𝑠  ×  𝑆𝐹𝑂𝐶 

where SFOC represents the efficiency of the engine, and its value varies under different 
speeds or propulsion power. In the industry, the data of SFOC is calibrated through a 
series of engine testing, and the curve of SFOC with respect to the propulsion power Ps is 
derived by data analyses. The theoretical SFOC curve indicates the average SFOC within 
the measured time interval, but discrepancies could remain between the measured SFOC, 
and the theoretical values from manufacturers. Figure 3.2 shows an example of SFOC 
measurement data. Its accuracy can therefore be improved through better modelling of 
SFOC under various operational conditions. Due to the hull-propulsion-engine coupling, 
the efficiencies of the engine, i.e. SFOC, are also significant for the final energy cost.  

 

Figure 3.2. The measurement data of SFOC under different propulsion powers. 

Both power and fuel consumption could be modelled in various ways from exiting 
research, such as empirical (Lang & Mao, 2020, 2021) and more advanced machine 
learning approaches (Lang et al., 2022, 2024). Additionally, SFOC varies under actual 
operational conditions, also potentially causing discrepancies in fuel estimation and 
affecting voyage optimization. Further investigation is needed to understand how they 
influence decision support system for shipping energy efficiency. Depends on how much 
prior-knowledge/physical principle and the volume of ship performance monitoring data 
are available to build models estimating the power and fuel consumption, different 
modelling techniques can be categorized into black-box, white-box and grey-box models 
as show in Fig.3.3. In the following subsections, some basic introduction about those 
models, especially the semi-empirical models are presented. More detailed information can 
be referred to the listed scientific publications. 
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Figure 3.3. Different performance models used for the cost function 

3.1 Speed-power empirical model 

Since the shaft power directly relates to the total work done by the engine, the first cost 
function aims to optimize the overall sailing cost by minimizing the shaft power, i.e., 
include a speed-power relationship. In this part, the ship performance model is developed 
by a conventional empirical approach as shown in Fig.3.1. From the speed over ground Vg, 
we first need to determine the ship's speed through water V and the speed of ocean 
current Vc.  

𝑉 =  𝑉𝑔 + 𝑉𝑐  

Then based on the encountered sea condition, and the ship’s characteristics, the total 
resistance RTotal is derived from adding calm water resistance RCalm, added wind resistances 
RWind, wave RWave, current RC, and shallow water RS, as follows:  

𝑅𝑇𝑜𝑡𝑎𝑙  =  𝑅𝐶𝑎𝑙𝑚  +  𝑅𝑊𝑖𝑛𝑑  +  𝑅𝑊𝑎𝑣𝑒  +  𝑅𝐶 +  𝑅𝑆 

The above forces are calculated based on (Lang & Mao, 2020, 2021) in this part. The total 
resistance RTotal is counteracted by the effective power of engine and propellers to propel 
the ship forward, under the speed through water V. And this effective power is the shaft 
power Ps taking into account the efficiency and manufacturer specifications. The shaft 
power Ps can be derived as follows:  

𝑃𝑠 =  𝑅𝑇𝑜𝑡𝑎𝑙 ∗ 𝜂 

𝜂 is the overall efficiency coefficient that calculated based on (Holtrop & Mennen, 1982). 
It includes the hull efficiency, propeller open water efficiency, and engine shaft efficiency. 
And eventually, the relationship between the speed through water V to the shaft power Ps 
is established.  
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3.2 The semi-empirical model for added resistance in waves 

The accuracy of a ship’s resistance and propulsion calculation is vital for the entire iterative 
process. First, a further improved semi-empirical model for added resistance due to head 
regular waves is presented. Then, extension formulas are proposed to consider effect of 
other wave headings. Finally, a correction factor is proposed in the component of added 
resistance to consider nonlinear effect of power consumption in large sea states. Then 

𝑅𝑇𝑂𝑇𝐴𝐿 is estimated by: 

𝑅𝑇𝑂𝑇𝐴𝐿 = 𝑅𝐶𝐴𝐿𝑀 + 𝑅𝐴𝐴 + 𝑅𝐴𝑊 

where 𝑅𝐶𝐴𝐿𝑀 and the propulsive efficiency 𝜂𝐷 can be quite accurately estimated by 

model test results in this study, and 𝑅𝐴𝐴 is estimated by the well-established method 

in ISO (2015). The preliminary correction factor is found and tuned by analyzing the 

difference between conventional prediction and full-scale measurements used in this 

study. For a general application of  this correction factor, comprehensive investigation 

should be conducted to establish such a flexible formula/factor, based on more 

extensive experimental tests and full-scale measurements. While different 

components in the proposed model for 𝑅𝐴𝑊 are further verified and validated in the 

following analysis. 

For a ship sailing in head waves with speed 𝑉 and 𝛽 =  0, the added resistance in 

regular waves of  frequency 𝜔 can be evaluated by the sum of  two components, i.e., 

added resistance due to wave reflection 𝑅𝑎𝑤𝑟 , and due to ship motions 𝑅𝑎𝑤𝑚  as 

(Strom-Tejsen et al. 1973): 

 
𝑅𝑎𝑤(𝜔|𝑉, 𝛽) = 𝑅𝑎𝑤𝑟(𝜔|𝑉, 𝛽) + 𝑅𝑎𝑤𝑚(𝜔|𝑉, 𝛽) 

 

For the semi-empirical models of  added resistance in head waves, all the detailed 

formulas are given in Lang and Mao (2020) for head waves and Lang and Mao (2022) 

for arbitrary waves. 

An actual sea state is often described by a wave spectrum of  predefined formats 

multiplied by a spreading function 𝐷(𝜃). In this study, the JONSWAP wave spectrum 

and a Consine-Squared spreading function 𝐷(𝜃), in terms of  the significant wave 

height 𝐻𝑠 , wave peak period 𝑇𝑝 , peakedness factor 𝛾  and the wave spreading 

direction 𝜃, are applied to describe irregular waves of  a ship’s actual sailing wave 

conditions, 

𝑆(𝜔|𝐻𝑠 , 𝑇𝑝, 𝛾)𝐷(𝜃) =
320𝐻𝑠

2

𝑇𝑝
4𝜔5

exp (
−1950

𝑇𝑝
4𝜔4

) 𝛾
exp[

−(𝜔−𝜔𝑝)
2

2𝜎2𝜔𝑝
2 ]

𝐷(𝜃) 

𝐷(𝜃) = {
2

𝜋
cos2(𝜃)                if −

𝜋

2
≤ 𝜃 ≤

𝜋

2
0                                       otherwise

 

 

where 𝛾 is set to the standard value 3.3, and the spectral width parameters 𝜎 = 0.07 

for 𝜔 ≤ 𝜔𝑝 , 𝜎 = 0.09 when 𝜔 > 𝜔𝑝 . The added resistance in waves 𝑅𝐴𝑊  under 
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actual wave environments (irregular waves) is conventionally estimated by: 

𝑅𝐴𝑊(𝜔|𝐻𝑠 , 𝑇𝑝, 𝛾, 𝑉, 𝛽) = 2 ∫ ∫ 𝑆(𝜔|𝐻𝑠 , 𝑇𝑝, 𝛾)
𝑅𝑎𝑤(𝜔|𝑉, 𝛽)

𝜁𝑎(𝜔)2
𝐷(𝜃 − 𝛽)𝑑𝜃𝑑𝜔

+
𝜋
2

−
𝜋
2

∞

0

 

 

where 𝜁𝑎(𝜔) is amplitude of  the regular wave to get the added resistance 𝑅𝑎𝑤(𝜔). 

The term 𝑅𝑎𝑤/𝜁𝑎
2 is often referred as the transfer function of  ship resistance. 

3.3 Speed-power machine learning model 

Recent research and industry advancements have led to the development of machine 
learning models, which can effectively predict ship performance under varying conditions. 
Various machine learning techniques have been applied to describe the speed-power 
relationship of ships in the existing research.  

Different models are developed and compared to identify the method with the least 
discrepancy for ship performance modeling in (Lang et al., 2021). It can be seen in Fig. 3.4 
that, the XGBoost technique demonstrates a cumulative discrepancy of no more than 3% 
in power prediction over more than 10 days of actual sailing. In contrast, other methods 
such as neural networks, support vector regression, generalized additive models, and 
statistical polynomial regression show discrepancies of around 20%-30%. 

 

 

(a) Voyage 1        (b) Voyage 2                (c) Voyage 3 

Figure 3.4. The discrepancies in propulsion power using different machine learning models. 

3.4 Optimization framework in DSS for shipping energy 

efficiency 

The flowchart and methods for the proposed DSS of double-ended ferries are presented in 
Fig. 3.5 to determine optimal operational set-point parameters/inputs of a specific trip, i.e., 
an input layer of all necessary information about the trip, data-driven models required to 
describe the ship and engine performance, and Bayesian optimization algorithm with prior 
belief from proper/historical trip settings. For the DSS working onboard, the optimization 
algorithm (e.g., Wang et al. 2019, Chen and Mao 2024) integrated should be computational 
efficient. The Bayesian algorithm that can utilize prior sailing experiences/data is proposed 
to fulfil such requirements. 

First, the input layer of the DSS includes both prior, current, and forecast information 
related to the specific trip for its DSS. They serve as the interface and fed into the 
decision-making model as in Fig.3.5.  

• Reference route. It provides historical sailing waypoints (longitudes, latitudes, heading 

angles, etc.) like this trip, as well as speed 𝑉𝑔 and fuel consumption.  
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• MetOcean data. It is extracted from weather forecasting database. Once the route 
coordinates are set, and the trip schedule is known the data is interpolated to 
match the position and times. 

• An initial guess or prior of “pre-assumed” optimal operation parameters. This optimization 
initialization guides the optimizer into a search space that is most likely to contain 
stationary points that allow for the reduction of fuel consumption.  

For optimal navigation of such double-ended ferries, one of the big challenges is to 
understand the ferry’s performance in terms of different engine settings. Reliable models 
are rarely available, and there are not mature enough guidelines to assist actual navigation 
of those ferries. As the increase of shipping digitalization, some data collection systems can 
be easily installed onboard those ferries to assist development of the DSS for energy 
efficient operations. In the following, a case study double-ended ferry with data collections 
onboard is used to demonstrate the challenges and validate the proposed DSS.  

 

 

Figure 3.5. The flowchart and methods of the proposed Decision Support System (DSS). 
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4 Results for ship dynamics 

The initial step in this research project was to simplify the system identification of the ship 
dynamics to a single degree of freedom, specifically the roll motion. The important 
findings from this initial simplification are summarized below followed by the results from 
the subsequent research where the system identification was expanded to three degrees of 
freedom manoeuvring. The research results for ship dynamics using experimental tests and 
some CFD simulations for modelling purposes are summarized in this 
Trafikverket/Lighthouse funded PhD thesis (Alexandersson 2025), which is composed 
scientific publications of Alexandersson et al.(2021, 2022, 2023, 2024), as well as an extra 
submitted journal publication. 

4.1 Roll motion 

The objective was to develop parameter identification techniques for roll motion models 
derived from roll decay model tests. The roll damping was studied using time series data 
from 250 roll decay tests assembled by RISE at the Maritime Dynamics Laboratory, SSPA 
Maritime Center. Additionally, the aim was to propose a parametric model structure for 
roll motion dynamics that generalizes well, based on prior knowledge from the model 
tests. System identification was conducted on linear, quadratic, and cubic models. Results 
from the simulations with the identified models (from one of the roll-decay tests) are 
presented in Fig. 4.1. The cubic and quadratic models reproduced the model test well, but 
the linear model was too simple to provide an accurate representation for both smaller and 

larger roll angles. The amplitude decrement Φ𝑎 and roll damping B for each oscillation can 
be visualized, as seen in Fig. 4.2. The quadratic model, with fewer parameters than the 
cubic model, is expected to have a higher level of generalization at the same accuracy and 
was therefore selected as the best mathematical model for the roll motion. 

 

Figure 4.1. Roll decay estimation with identified cubic, quadratic, and linear models. 
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Figure 4.2. Roll decay model test, linear-, quadratic-, and cubic-model. 

4.2 Manoeuvring 

The wPCC test case Fig. 4.3 is a ship that was designed for wind-assisted propulsion 
system (WAPS) and can alter between a fully sailing mode, and a fully motoring mode, and 
in between. However, only the motoring mode was considered in this project. Because of 
the WAPS, the wPCC design differs slightly from conventional motoring cargo ship 
designs. The wPCC has two very large rudders, two to three times larger than needed for a 
conventional ship. System identification was conducted on data from free running model 
tests with the wPCC.    

 

Figure 4.3. wPCC tested at RISE SSPA Maritime center. Copyright 2020 by RISE. 

The wPCC model test data was split into training-, validation-, and testing-sets as shown in 
Fig. 4.4. The model structure was established by identifying various competing 
mathematical model structures on the training set and evaluating their accuracy on the 
validation set.  The best performing model was retrained on all the data from the training 
and validation sets. The accuracy of this final model was evaluated with the test set, 
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predicting the turning circle test as shown in Fig. 4.5. The final model could estimate the 
turning circle tests with less than 5% deviation. 

 

Figure 4.4. wPCC training, validation and testing datasets. 

 

Figure 4.5. Turning circle test case for wPCC, track plots from model test and simulation. 

However, it was found that the identified model was physically incorrect, despite yielding 
good results. Therefore, a physics-informed (PI) model was proposed, incorporating a 
semi-empirical rudder model. Figure 4.6 compares the forces from the PI model and the 
original physics-uninformed (PU) model. The identification of the PU model resulted in an 

incorrect decomposition between the hull yawing moment 𝑁𝐻 and the rudder yawing 

moment 𝑁𝑅  due to multicollinearity, as discussed in the introduction of this report. In 
contrast, the PI model correctly decomposed the rudder and hull forces. Additionally, the 

decomposition between drift-dependent hull forces 𝑁𝐻(𝑣) and yaw rate-dependent hull 

forces 𝑁𝐻(𝑟)  was more accurate in the PI model compared to the PU model, as shown in 
Fig. 4.7. 
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System identification was also conducted on data from captive tests with another test case 
called Optiwise. This test case involved an ordinary VLCC tanker but with a larger rudder 
size adopted for WAPS. Significant effort was made to develop an accurate prediction 
model for the rudder forces. Based on the MMG original rudder model (Yasukawa and 
Yoshimura, 2015), an enhanced quadratic model was proposed. Figure 4.8 shows a 
comparison between the rudder forces measured during the Optiwise tests and the 
predictions from both the MMG original and the enhanced quadratic models. Some states 
were also calculated using CFD in the state VCTs. There was good agreement between the 
measured and predicted rudder forces. 

 

Figure 4.6. Estimations of forces during a zigzag10/10 model test compared with model predictions. 

 

Figure 4.7. Decomposition of hull forces and moments during a zigzag20/20 test for parameters related to 
drift, yaw rate, and the prediction models. 

The identified rudder models could be combined with a hull force prediction model to 
form a modular manoeuvring model for the entire ship. The total forces from this model 
were in good agreement with the inverse dynamics forces from the free-running model 
tests (FRMT), as shown in Fig. 4.9. Additionally, zigzag tests were compared with closed-
loop simulations using the developed models, as shown in Fig.4.10. The experiments and 



 

 
 

Lighthouse June 2025 21(32) 

simulations were in good agreement for the zigzag 20/20 test, though there was slightly 
less agreement for the 10/10 test. 

 

Figure 4.8. Rudder forces during a zigzag test vs predictions with the MMG models. 

 

Figure 4.9. Inverse dynamics forces during zigzag tests vs predictions with the MMG models. 

 

 

Figure 4.10. Comparison of zigzag tests between Optiwise experiments (black) and simulations with the 
MMG original (cyan) and MMG quadratic (purple). 
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5 Results for shipping energy efficiency 

In modern ships, captains can issue a command from the ship bridge directly into the 
engine through the throttle control, which is a lever or handle with different positions that 
regulates the amount of fuel injection into the compression-ignition cylinders. The fuel 
intake controls the engine’s speed and load and power outputs. The double-ended ferry 
command bridge has two throttle levers, one for each engine. Finding optimal control 
strategy of engines to reduce fuel consumption becomes more difficult. Two case study 
ships are used to demonstrate the fuel saving by implementing data analytics and ML-
enhanced decision support system for assisting ship navigation (Vergara, Alexandersson et 
al. 2023). 

5.1 Case study ships 

The first case study is a RoRo passenger ship named Uraniborg of ship length 46 meters, 
service speed 11.5 knots, and two identical internal combustion engines Caterpillar C32 
ACERT V12 with maximum rating 709kW of 1600 rpm. The ferry transits the Øresund, 
specifically the route Ven-Landskrona in southern Sweden, a route that is approximately 4 
nautical miles. A basic sketch of such a double-ended vessel is illustrated in Fig. 5.1. The 
main engine notations (Engine 1 and Engine 2) will switch their functionalities between 
stern and bow engines for different trip directions. For the sake of convenience, bow and 
stern engines are used for the description. Table 5.1 summarizes the most relevant 
parameters to operate those double-ended ferries. 

 

Figure 5.1. General arrangement of a double-ended ferry. 

 

Table 5.1. Main operational parameters of double-ended ferries. *FCR: Fuel Consumption Rate 

Symbol Feature Units Symbol Feature Units 

𝑉𝑔 Speed Over Ground knots 𝑛𝑠 Rotation Speed of Stern 
Engine 

rpm 

𝜑𝑠ℎ𝑖𝑝 Ship Heading deg 𝑛𝑏 Rotation Speed of Bow 
Engine 

rpm 

𝐿𝑠 Load of Stern Engine % 𝑉𝑊𝑅 Relative Wind Speed m/s 

𝐿𝑏 Load of Bow Engine % 𝜑𝑊𝑅 Relative Wind Angle deg 

𝑚̇𝑠 FCR* of Stern Engine l/h 𝑉𝑠𝑐 Sea Current Speed m/s 

𝑚̇𝑏  FCR* of Bow Engine  l/h 𝜑𝑠𝑐 Sea Current Angle (North) deg 
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The second case study ship is a short sea shipping chemical tanker sailing between ports in 
European waters, across the Baltic Sea, North Sea and English Channel. Key specifications 
for the ship are provided in Table 5.2.  

 

Table 5.2: Specifications and Operational Data of the Chemical Tanker 

Parameter Value 

Length Between Perpendiculars 138.22 m 

Breadth 23.76 m 

Design Draft 9.27 m 

Displacement 25174 m3 

Maximum Continuous Rating (MCR) 7200 kW 

Service Speed 14 knots 

Data Collection Period Nov 2020 - Mar 2024 

Data Frequency 1 sample per minute 

 

The full-scale data from the vessels was down sampled from 1-minute to 10-minute 
intervals to reduce noise while preserving relevant trends. Some of the example routes are 
presented in Fig. 5.2 Then, steady-state filters based on first derivative-thresholds were 
applied to the ship’s engine power, engine speed and ship speed, effectively removing 
transients and manoeuvres. These signals were further smoothed using a second-order 
Savitzky-Golay filter. 

 

 

Figure 5.2. Some of the routes from measurements of the second case study ship. 

5.2 Data analytics and energy savings of double ended ferry  

It is a commuter ferry that goes 18 trips a day in about 30 minutes interval (without too 
little variations) between both islands. The time series of Vg along a typical trip is shown in 
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Fig. 5.3, where a one-minute moving average smooth is used to reduce measurement 
noises.  

 

Figure 5.3. Three different sailing stages in terms of speeds (upper plot), and identificaion of steady states 
by introducing speed acceleration (bottom plot). 

Normally, a trip is composed three sailing stages: 

- Acceleration, i.e., roughly the first 5 minutes at the start of a trip. 

- Steady/Cruising, i.e., the ferry reaches service speed. The derivative of speed, i.e., 
acceleration, is used to identify the steady states along the trip. For example, the 
sailing history located between the two dashed lines are considered to be stead 
state sailing. 

- Decceleration, i.e., when the ferry is close to destination and reduces its speed. 

Even though ship principles indicate that ship propellers work with highest efficiency 
when located at the ship stern, how to allocate power distribution between different 
engines/propellers is still not clear to the operators for those double-ended ferries. In the 

following, let the power ratio (𝑅𝑝) be used to describe the power allocation between bow 

and stern engines as, 

𝑅𝑃 =
𝑃stern

𝑃bow + 𝑃stern
 

The average power allocation Rp for each trip is estimated and its distributions are 
presented in Fig. 5.4. The power allocation is almost equal distributed from 0.5 to 0.9, 
without significant concentration of putting most of power at the stern engine. In addition, 
Figure 5.5 presents how the Rp affects total fuel consumption along each trip with fixed 
ETA. These results show that the lowest total power was observed to occur at a 100% 
stern power allocation. However, the challenge for the double-ended ferry is that the 
information of use as much as the stern engine does not guide operators with proper 
settings for each engine to achieve a given the desired target speed (ETA). Figure 5.55 also 
indicates that although the mean total fuel consumption decreases with the increments of 
Rp, there is no guarantee that optimal Rp always occurs at 100% stern allocation due to 
other influence parameters. Therefore, this study aims at developing onboard DSS to 
determine the optimal set-points of both bow and stern engines by combining machine 
learning techniques and optimization algorithms for minimum fuel consumption. 
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Figure 5.4. Histogram of the distribution of mean engine power allocation ratio for different trips. 

 

Fig. 5.5, total fuel consumption in terms of mean Rp for each trip of the double-ended ferry 

The full-scale tests were conducted between August 19 and August 22 of 2022. The 
operation was carried out by the ship’s captain and the 1st Mate. Before the tests, the 
captain was instructed to operate the ship by allocating most of the power on the stern 
thruster according to the DSS guidance. The 1st mate was unaware of the experiment. This 
set-up simulates the scenarios of DSS stern power allocation (Captain) and the regular 
arbitrary operation (1st Mate). Figure 5.6 presents the total fuel consumption per trip in 

terms of power allocation 𝑅𝑝. The observed trend aligns with that from previous data 

analysis. To have a fair comparison, some trips were filtered out if their mean speed (ETA) 
differ significantly from normal operations. Figure 5.6 (right) indicates the number of trips 
filtered out due to their either too high or too low speeds. After filtering 10 trips for each 
operation modes (i.e., Captain vs 1st Mate) are considered for the analysis. Table 5.4 
presents a summary of these results. In average the DSS guided operations of using more 
stern power (Captain) contribute to up to 18% fuel reduction compared to an arbitrary 
configuration (1st Mate). The saving might be a bit smaller if their average speeds are the 
same, but it will not change the results.  
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Figure 5.6. Total fuel consumption vs power allocation Rp for different trips, without filtering (left), filtering 
of trips based on speed/ETA difference (right).  

 

Table 5.3. Summary of the full-scale test results. 

Operator Number of valid trips 𝑉̅𝑔 (knots) 𝑀̅𝑓𝑢𝑒𝑙  (l) 
Δ𝑀̅𝑓𝑢𝑒𝑙

𝑀𝑓𝑢𝑒𝑙
0  

Captain 10 9.4 45.25 
-18% 

1st Mate 10 9.5 55.31 

 

5.3 Data-driven ship and engine performance models 

Some physical or semi-empirical models are available for practical ship operations, but the 
physical components and corresponding coefficients inside those models were mainly 
established from conventional ships. They are often associated with large uncertainties 
even for those conventional ships, and therefore are capable to model the operation 
performance of double ended ferries. Given the availability of large volumes of data, 
machine learning methods become attractive to model a ship’s performance more 
accurately. In this study, the fuel consumption of two engines and the ferry speeds are 
modelled by the XGBoost method, 

 

𝑚̇𝑠 = 𝑓𝑠(𝑛𝑠, 𝐿𝑠, 𝑛𝑏, 𝐿𝑏, 𝑊)

𝑚̇𝑏 = 𝑓𝑏(𝑛𝑠, 𝐿𝑠, 𝑛𝑏, 𝐿𝑏, 𝑊)

𝑉𝑔 = 𝑓𝑣(𝑛𝑠, 𝐿𝑠, 𝑛𝑏, 𝐿𝑏, 𝜑𝑠ℎ𝑖𝑝, 𝑉𝑠𝑐, 𝜑𝑠𝑐 , 𝑉𝑤𝑟 , 𝜑𝑤𝑟)
 

 

where W denotes all ocean weather related parameters, and the other parameters are 
described in Table 5.2, and they are chosen as the features of those models because they 
are acting as either the control variables or constraints of the decision-making system. 
Before such data-driven ship performance models integrated into the proposed DSS here, 
the model accuracy was assessed as in Fig. 5.7, which shows good predictions of the two 
voyages with the measured data.  



 

 
 

Lighthouse June 2025 27(32) 

 

Figure 5.7. Comparison of predicted and measured results for two test voyages: one across the Baltic Sea 
and North Sea (left), and one across the North Sea and English Channel (right). 

Overall, the XGBoost models demonstrate a good ability to predict m_fuel, with 
predictions closely matching actual measurements across the example voyages, thereby 
validating the features used and hyperparameters tuned in the model. Predictive accuracy 
for m_fuel is expected, as the model is informed by key operational variables, such as 
engine power, which is highly correlated with fuel consumption. However, predicting ship 
speed V presents larger challenges. While the model successfully captures general trends, it 
struggles to match the peaks and valleys observed in actual measurements. This 
discrepancy may be attributed to the high variability of metocean conditions or the 
exclusion of other operational variables. Nevertheless, the established models accurately 
capture the overall trend without significant prediction errors, making it sufficient for use 
in subsequent power allocation optimization to calculate fuel consumption and sailing 
time. 

For voyages across the Baltic Sea and the North Sea, four individual voyages, illustrated in 
Fig. 5.8 are selected as case studies to validate the proposed engine power allocation 
method. Detailed voyage information is provided in Table 5.4. Cases 1 and 2 feature 
relatively long routes, each spanning more than 3000 km and lasting over 140 hours. By 
contrast, Cases 3 and 4, which take place solely within the Baltic Sea, cover shorter 
distances of around 1100 km and require approximately 60 hours and 55 hours, 
respectively. 

 

Figure 5.8. The case study voyages across the Baltic Sea and North Sea for power allocation optimization. 

Table 5.4. The case study voyages across the Baltic Sea and North Sea. 
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Case 
ID 

Sailing area 
Distance 
[km] 

ETA 
[hours] 

Actual fuel consumption 
[tons] 

1 Baltic and North Sea 3388 145.50 121.6 

2 Baltic and North Sea 3089 143.83 86.2 

3 Baltic 1118 60.50 26.4 

4 Baltic 1153 55.33 26.6 

 

For Case 1 and Case 2, the voyage segmentation results are presented in Fig. 5.9. The 
power allocation optimization results are shown in Fig. 5.10 for Case 1 and Fig. 5.11 for 
Case 2, respectively. These figures illustrate the measured engine power and speed during 
the actual voyages, the optimized power settings for each leg, and the corresponding 
speeds. The metocean data encountered during the optimized voyage are also presented 
for a more comprehensive analysis. 

 

(a) 

 

(b) 

Figure 5.9. Segmented trajectories for voyages across the Baltic Sea and North Sea, showing (a) Case 1 
and (b) Case 2. 

 

Figure 5.10. Power allocation results for Case 1, including measured and optimized engine power, ship 
speed, and encountered metocean conditions for each waypoint along the optimized voyage. 

As shown in Fig. 5.9 (a), the voyage in Case 1 is segmented into nine legs. The chemical 

tanker encountered relatively harsh weather conditions, with 𝐻𝑠 reaching 3 meters in legs 7 
(purple) and 8 (yellow). Under this condition, the power allocation optimization achieved a 
potential fuel consumption reduction of 8.8 tons, which represents a reduction of 7.2% 
compared to the actual voyage measurement. As seen in Fig. 5.9, the optimal power 
allocation strategy prioritizes increased power at the beginning of the voyage when the 
encountered wave conditions were milder, followed by a significant reduction in power 

settings during leg 8 to conserve fuel. Although 𝐻𝑠 was relatively high, the power setting 
was still increased in leg 7 due to favorable following wave conditions, which has a smaller 
wave resistance relative to bow sea and head sea. The actual voyage duration was around 
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145 hours, while the optimized strategy introduced a minor delay of 17 minutes, well 
within the acceptable range of 1%. 

Similarly, for the voyage in Case 2, as shown in Figs. 5.9 (b) and Fig.5.11, the voyage is 
segmented into eight legs. Among these segments, legs 2 (blue), 3 (green), 7 (yellow), and 8 

(brown) experience peak 𝐻𝑠 value exceeding 1.5 meters. In leg 5 (orange), the chemical 

tanker encountered wind speed 𝑉𝑤𝑖𝑛𝑑 exceeding 10 m/s, and current speed 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
greater than 1 m/s. The optimal power allocation strategy involved reducing power during 
legs 3, 5, and 6 (purple), where conditions were least favorable (e.g., high waves and strong 
head wind). Conversely, power was increased during leg 2 with a following wave and leg 7, 
which had relatively mild wind conditions. Compared to the actual power settings, this 
optimized strategy resulted in a fuel consumption reduction of 3.9 tons, which is 
approximately a 4.5% reduction, with a minor delay of only 5 minutes. 

 

Figure 5.11. Power allocation results for Case 2, including measured and optimized engine power, ship 
speed, and encountered metocean conditions for each waypoint along the optimized voyage. 

The detailed optimized fuel consumption and time delays are presented in Table 5.5. For 
the shorter Baltic Sea voyages Case 3 and Case 4, the time delays after power allocation 
optimization also remain under 0.3%, fulfilling the requirement that the total sailing time 
deviate by no more than 1% from the ETA. Additionally, energy consumption is reduced 
by 7.1% and 7.3%, respectively. The segmentation times for all case studies are 
approximately 30 milliseconds. The optimization takes about 90 seconds for Cases 1 and 2, 
and around 35 seconds for Cases 3 and 4. 

 

Table 5.5. The optimized fuel consumption and time delay of the case study voyages. 

Case ID Time delay [%] 
Optimized fuel consumption 
[tons] 

Reduction [%] 

1 0.19% 112.8 7.2% 

2 0.06% 82.3 4.5% 

3 0.28% 24.5 7.1% 

4 0.10% 26.5 7.3% 
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6 Concluding remarks 

This project investigated the enhancement of ship manoeuvring models through the 
integration of prior knowledge embedded in parametric model structures and semi-
empirical formulas. The major conclusions are that physically accurate models can be 
derived from parametric model structures when prior knowledge about ship 
hydrodynamics and semi-empirical formulas are embedded in the structure, provided that 
the observed data is correct and informative, as demonstrated with VCT data. It was also 
concluded that physically accurate models could not be identified from standard 
manoeuvers, which contained insufficient informative data. However, by adding a semi-
empirical rudder model, the identification process was guided towards a more physically 
accurate model. 

Key findings indicate that inverse dynamics regression is an efficient method for parameter 
identification in parametric models. The proposed quadratic model structure for roll 
motion demonstrates good generalization, and the new parameter identification method 
accurately predicts manoeuvring models from standard manoeuvres. However, challenges 
with multicollinearity and the need for more informative data are highlighted. The study 
concludes that semi-empirical formulas can guide identification towards more physically 
correct models, and VCT can provide the necessary data for accurate model identification. 
The implications of this research suggest that integrating semi-empirical rudder models 
and utilizing VCT can significantly enhance the accuracy and generalization of ship 
manoeuvring models, contributing to more reliable and physically accurate simulations in 
maritime engineering. 

For the application of data analytics and machine learning modelling for energy efficiency 
shipping measures, it is demonstrated that more than 10% energy saving can be easily 
observed by the doubled ended vessel, by guiding ship operators to put as much as 
possible the power to the stern engine keeping the same ETA. For the short sea shipping, 
about 5% fuel savings can be found by the proposed method in this project. 

7 Further reading reference 

This work has been carried out in the framework of a PhD thesis by Martin 
Alexandersson. The research project (DEMOPS) has been financed in two different stages 
(Part I, 2010-2023 and Part II ,2023-2025) by the Swedish Transport Administration 
operated by Lighthouse. The detailed explanation of the methods and findings from this 
research project is reported in Martin Alexandersson’s PhD thesis (enclosed to this report). 
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