Skip to main content
Sveriges samverkansplattform för sjöfartsforskning och innovation

Hållbar sjöfart (dev)

Trafikverkets branschprogram Hållbar sjöfart som löper över tio år, 2019-2028 och har nu alltså kommit halvvägs. Programmet, som drivs av Lighthouse, har som målsättning att skapa en internationellt konkurrenskraftig, hållbar och säker sjöfartssektor med god arbetsmiljö.

Hållbar sjöfart


Hållbar sjöfarts temaområden

Fartygsdesign, framdrivning och handhavande

För att uppnå en sjöfart utan negativa effekter på klimat och miljö krävs djup kunskap om såväl klassiska fartygstekniska frågeställningar som om hur fartyget framförs samt hur sjöfarten påverkar miljön. En hållbar sjöfart förutsätter fartygsteknisk utveckling för att kunna bedöma om nya designkoncept, nya materialval, nya bränslen, ny reningsutrustning m.m. verkligen leder till minskad energiförbrukning och minskad negativ miljöpåverkan såsom utsläpp till luft och vatten m.m. En hållbar sjöfart förutsätter också en ständig utveckling av det operationella handhavandet av fartyg. Hur minskade utsläpp kan uppnås vid daglig drift med hjälp av t.ex. eco-driving, fartbegränsningar och optimering av fartygsrutter med hänsyn till; djupförhållanden, vind och strömmar, kommer även fortsättningsvis att vara ett viktigt forskningsfält.

Eftersom de ekologiska effekterna av utsläpp från fartyg är beroende av när och var utsläppen sker, är det även av betydelse till vilka havsområden som intensiv fartygstrafik styrs. Analyser av sjöfartens rumsliga utnyttjande av känsliga havs- och kustområden är därför nödvändiga.

Inom det sociala hållbarhetsperspektivet kan här även ses hur frågor om såväl design som handhavande kan spela stor roll när det kommer till säkerhet och arbetsmiljö ombord.
Inom det ekonomiska hållbarhetsperspektivet är området relevant då fartygsteknisk innovation och utveckling kan resultera i mer kostnadseffektiva lösningar. Vid såväl nybyggnation som underhåll och utveckling inom befintlig fartygsflotta kan nya, hållbara lösningar av högre kvalitet och/eller till lägre kostnad bidra stärka sjöfartens konkurrenskraft.

Det tematiska området Fartygsdesign, framdrivning och handhavande fokuserar på projekt som leder till utveckling av modeller och metoder som också kan tillämpas på okonventionella framdrivningslösningar, skrovformer eller materialval och leda till fartygs- och reningssystem som är funktionella, effektiva och utgör en god arbetsmiljö. Fartygsdesign, framdrivning och handhavande fokuserar även på projekt om hur det dagliga handhavandet och driften av fartyg kan förändras och förbättras, samt på sjöfartens rumsliga utnyttjande av våra vattenvägar.

En rad aktuella forskningsfrågor inom området lyfts fram i Lighthouse förstudier : Dynamisk dimensionering av fartyg, Maritim elektrifiering – behov och möjligheter och Förbättrade prestandaprognoser och driftsoptimering av fartyg. Forskning inom vindassisterad framdrivning bedrivs också inom Lighthouse postdoktor-program.

Fartygsdesign och framdrivning

I begreppet fartygsdesign och framdrivning inkluderas klassiska marintekniska frågeställningar som t.ex. skrovkonstruktion, utformning av skrovform, propellerdesign, materialval, stabilitet, sjöegenskaper men även framdrivningssystem och alternativa drivmedel, installationer av reningsutrustning, värmeåtervinning, anti-foulingteknik, m.m.

Utformningen av fartygets skrovform och vindmotstånd på överbyggnader påverkar motståndet att driva fartyget framåt. I takt med att fartygen blir större och mer unika var för sig är det viktigt att förstå hur motstånd i vågor och luftmotstånd påverkar drivmedelsförbrukningen. Det finns stora energibesparingsvinster att hämta, speciellt om interaktionen med propeller, roder, fenor för stabilisatorer mm beaktas samtidigt.

Om fartygets vikt och mängden skrovmaterial minskar, sparas resurser vid byggnation och under hela fartygets driftsfas. För att nå den typen av fördelar behöver kunskap utvecklas och metoder förfinas. Effektivare materialutnyttjande förutsätter att skrovhållfastheten kan bedömas i relation till operationsprofil, sjöegenskaper och handhavande med bättre noggrannhet än idag. Med metoder för segelkonstruktioner (vindassisterad framdrivning) kan beroendet av fossil energi minskas, detta behöver dock ses i ett livscykelperspektiv som tar hänsyn till den rad av aspekter, inklusive sjösäkerhet och arbetsmiljö, som installationen innebär. Detsamma gäller förstås alla mer okonventionella uppslag kring alternativa drivmedel och framdrivningssystem. Med ett tydligt systemperspektiv finns också behov av att förbättra säkerheten och precisionen i många av dagens fartygsdesignmetoder för t.ex. skrovkonstruktion, sjöegenskapsanalys, prestanda- och propulsionsprediktering.

Handhavande

Med handhavande menas hur besättning och landbaserad personal styr det dagliga framförandet och driften av fartyg. Hur tillgänglig information och installerad teknik verkligen används har en avgörande inverkan på hur energieffektivt och säkert ett fartyg framförs och hur stora utsläpp det blir till luft och vatten. Kunskap och attityder ombord och iland påverkar förmågan, möjligheten och viljan att optimera handhavandet av fartyget och att nyttja och underhålla installerad teknik.

För att uppnå en hållbar sjöfart krävs djupare kunskap och forskning om människa-teknik-interaktioner där ombord- och landpersonals attityder och beteenden är en viktig förutsättning för att minska sjöfartens miljöpåverkan. En hållbar sjöfart ska nyttja inre vattenvägar och haven på ett hållbart sätt. Forskning som kan belysa nödvändiga förändringar av fartygsrutter, fartygsflöden och ankarplatser för att minska konflikter med andra intressen är även nödvändig.

Maritimt arbetsliv

En fysisk, social och organisatorisk arbetsmiljö som bidrar till ett långsiktigt hållbart arbetsliv är en strategisk utmaning på såväl nationell som global nivå. I Sverige har regeringen antagit en arbetsmiljöstrategi för det moderna arbetslivet som pekar ut riktningen för åren 2016–2020 (Skr. 2015/16:80). Genom arbetsmiljöstrategin identifieras tre områden som särskilt prioriterade: nollvision mot dödsolyckor och förebyggande av arbetsolyckor, ett hållbart arbetsliv samt en god psykosocial arbetsmiljö. På internationell nivå arbetar FN:s sjöfartsorgan IMO för att implementera och genomföra Agenda 2030 för hållbar utveckling. Här har svensk sjöfart stor möjlighet att agera förebild för att uppnå de globala målen inom det maritima arbetslivet.

De tekniska och administrativa system som ska hanteras i arbetslivet blir allt mer komplexa och ställer nya krav på användaren för att övervaka, kontrollera och lösa nya typer av situationer. Utformningen av dessa system påverkar individens prestation, hälsa och välbefinnande men också personalens motivation, attityder och beteenden. Därmed påverkas organisationens totala effektivitet och konkurrenskraft, liksom dess möjlighet att hantera förändringar och säkerhetsutmaningar. Forskningen ska sträva efter att skapa goda och stressfria arbetsförhållanden inom såväl nationell som internationell sjöfart, fria från psykosociala problem och dålig arbetsmiljö till följd av minskade besättningsstorlekar, mindre marginaler i logistikkedjan och brister i design av ny teknik m.m.

Inför en framtid där människor kan förväntas arbeta allt högre upp i åldrarna krävs, utöver möjlighet till kontinuerlig kompetensutveckling, arbetsförhållanden och arbetsvillkor som förebygger risken för tidigt utträde från arbetslivet samtidigt som nödvändig kunskapsöverföring kan säkerställas. Jämlika och inkluderande arbetsplatser där alla, oavsett exempelvis kön, etnisk tillhörighet eller religion, ges samma möjligheter att påverka sitt arbetsliv, och där deras arbete och kompetenser värderas likvärdigt är en förutsättning för en framtida socialt hållbar utveckling.

Området berör i första hand det sociala hållbarhetsperspektivet, samtidigt som ett väl fungerande maritimt arbetsliv är en grundpelare för ekonomiskt hållbar sjöfart. Det krävs intensifierad forskning om hur organisationer och system kan utformas för ett långsiktigt hållbart maritimt arbetsliv. Det krävs även ökad kunskap om samspelet mellan ledning, chefer och medarbetare i flerkulturella miljöer med geografiskt spridda arbetsplatser och hur ledarskapet förhåller sig till ett arbetsliv som är ställt under fortlöpande förändring. Mer forskning behövs också för att förstå hur tekniska och administrativa system inom sjöfarten kan utformas, implementeras och underhållas för att öka dess användbarhet och minska risken för psykisk och fysisk ohälsa, suboptimeringar, felhandlingar och olyckor som kan medföra personskador och skada på fartyg och miljö. Förutsättningarna för att skapa ett hållbart maritimt arbetsliv ligger också i att lyfta vissa frågor till mer tvärvetenskapliga perspektiv och använda erfarenheter från andra områden, utöver sjöfart.

Inom Lighthouse pågår två förstudier kring maritimt arbetsliv, Kompetensförsörjning inom den maritima näringen samt en inventering av forskningsbehov avseende regelverk, pedagogiska behov och människa/maskin-interaktion i fartygens framtida automatiserade och digitaliserade system. Inom Lighthouse postdoktor-program pågår även forskning som fokuserar på de konsekvenser autonoma fartyg kan ha för fartygets organisation, sjöfartsyrket och förhållandet mellan sjöfartens intressenter.

Effektiva transportsystem, styrmedel och affärsmodeller

Sjöfart är en förutsättning för världshandeln och den pågående globaliseringen, vårt välstånd och ett centralt inslag i det internationella transportsystemet. Sjöfarten är därmed nära sammankopplat med forskningsområden såsom juridik, national-, företags- och industriell ekonomi med delområden internationell handel, redovisning och logistik. Att utveckla effektiv logistik och integrerade transportsystem, från lokalt till globalt, är centralt för att möta hållbarhetsutmaningarna.

Utvecklingen av befintliga styrmedel och införandet av nya styrmedel är nödvändigt då man inte kan förvänta sig att transportnäringen frivilligt och överallt kommer att vidta de åtgärder som krävs för att nå de politiska mål som fastslagits på olika nivåer.

Styrmedel syftar till att korrigera marknadsmisslyckanden och ändra aktörernas beteende så att resurserna används på ett, ur samhällets perspektiv, mer effektivt sätt. Styrmedlen kan delas in i fyra grupper: administrativa (exempelvis lagstiftning, normer, regelgivning, teknikkrav), ekonomiska (såsom skatter, avgifter, bidrag, subventioner), information (inkluderar bl.a. upplysning, utbildning, rådgivning) samt forskning, utveckling och demonstration (se t.ex. Naturvårdsverkets rapport 6415/2012).

Infrastrukturinvesteringar kan också vara styrmedel eller komplement till styrmedel. I många fall krävs att flera styrmedel kombineras för att nå framgång.

Sjöfartens beskaffenhet är sådan att styrmedel inte kan koncentreras på en nivå. Det finns ett samspel mellan de internationella konventionerna och styrdokumenten, till nationella, regionala och lokala myndigheters styrning. Samtidigt är många styrmedel trafikslagsövergripande och kan inte betraktas isolerat i ett sjöfartssamanhang. Styrmedelverktyget är också tillämpligt i samtliga tre hållbarhetsdimensioner; ekonomiskt, miljömässig och socialt. 

Hantering av målkonflikter och avvägningen mellan olika önskvärda utfall är en viktig del av arbetet med att utforma styrmedel. Till exempel kan regler som är ämnade att minimera utsläpp leda till oproportionerliga kostnadsökningar. Detta kan i sin tur försämra mobiliteten för privatpersoner och leda till att mer kostnadseffektiva transporter med högre miljöpåverkan väljs, alternativt minska konkurrenskraften för transportberoende företag. Exempelvis innebär bullerkrav på hamnar att mindre hamnar ofta begränsas i vilka möjliga öppettider som kan erbjudas, vilket försämrar deras konkurrensförmåga gentemot större, mer avskilda, hamnar, och påverkar vilka transportupplägg företag har möjlighet att använda sig av.

Transportsystemet är komplext och det finns en risk att styrmedlens utformning leder till oförutsedda negativa effekter eller att målen inte uppnås. För att undvika detta i möjligaste mån fordras att effekterna av policy och styrmedel samt interaktionseffekter vid kombinationer av dessa kan förutspås med tillräcklig precision. Detta är av särskild vikt vid stora eller täta förändringar, då styrmedlens effektivitet minskar om de inte uppfattas varaktiga nog att styra aktörernas beteende på lång sikt. Slutligen, måste policyn och styrmedel kunna utvärderas i efterhand med avseende på dess måluppfyllelse.

Styrmedel och incitament för hållbara transportsystem måste vidareutvecklas och utvärderas. Detta kräver kunskap och metoder för att värdera sjöfartens samhälls- och företagsekonomiska nyttor och kostnader för att identifiera gap att hantera på den politiska nivån. Det gäller generellt för konkurrensen mellan trafikslag och specifikt vid introduktion av hållbara drivmedel och reningsteknologier, integration med landinfrastrukturen och vissa operativa åtgärder såsom slow-steaming. Området karaktäriseras dels av ett stort beroende mellan privata och offentliga sektorer och dels av behov av internationella lösningar.

Ett flertal förstudier från Lighthouse adresserar området : Beräkning av transportarbete och emissioner i MRV, Low Carbon Marine Freight, Vattenvägen – den intermodala pusselbiten 1 och 2 samt Hållbarhetsklassificering för fartyg. I Lighthouse postdoktor-program arbetade två postdoktorer inom området med fokus på Efterfrågeaspekter på RoRo-sjöfart samt Miljöstyrande avgiftssystem och incitamentsstrukturer för hamnar.

Digitalisering och automatisering

Digitalisering och automatisering har betydelse för samtliga hållbarhetsdimensioner och skapar stora möjligheter för ökad säkerhet och effektivisering inom transportsystemet, så även inom sjöfarten. Risken för olyckor med t.ex. oljespill som följd, kan förväntas minska genom exempelvis mer avancerade anti-kollisionssystem. Det finns även stor potential att använda dessa verktyg för att öka energieffektiviteten och minska drivmedelsförbrukningen och därmed utsläpp av växthusgaser och luftföroreningar.

Detta tematiska område syftar till att öka och utveckla nyttjandet av digitalisering och automatisering. Samtidigt bygger sjöfarten på att samverkan sker mellan olika aktörer. Digitaliseringen stödjer en kraftigt ökad integration mellan olika aktörer i transportkedjan och utgör därigenom ett nödvändigt smörjmedel för transportsystemet som helhet. Digitalisering och automatisering skapar också möjligheter för förbättrad effektivitet, exempelvis för resurs- och energianvändning, för transportsystemet som helhet men också vad gäller sjösäkerhet och sjöfartsskydd och för människor som operativt arbetar i verksamheten. Säkerhetsfrågor adresserar inte enbart den maritima verksamheten, ökade informationsflöden ställer också ökade krav på säkerhet i informationssamverkan.

Till skillnad från till exempel fossil- eller utsläppsfrihet, är digitalisering och automatisering inget mål i sig. Området – som ofta även inkluderar, och till naturen är beroende av uppkoppling/kommunikation – berör istället ett antal tekniker och tillämpningar som möjliggör radikalt annorlunda lösningar för att åstadkomma hållbarhet, ökad säkerhet och effektivitet inom sjöfartssystemet. Ett starkt motiv för att rikta forskningsinsatser mot de grundfunktioner som kan hänföras till digitalisering, automatisering och uppkoppling är att de har potential till förbättringar som inte bara är inkrementella utan även genomgripande (disruptiva) och kan förändra spelreglerna helt, även inom sjöfarten. Således är området brett. Avgörande för att effektivt uppnå samtliga tre hållbarhetsaspekter kommer att vara exakt hur nyttjande och tillämpning av digitalisering, automatisering och uppkoppling sker. Därför är området i högsta grad relevant för uppfyllandet av de transportpolitiska målen.

Digitalisering och automatisering möjliggör bl.a. ökad energieffektivitet och därmed minskad drivmedelsförbrukning, vilket är en viktig förutsättning för att kunna uppnå fossilfrihet och nollemissioner av skadliga utsläpp. Machine learning kan användas för att optimera ett fartygs prestanda i realtid så att drivmedelsförbrukningen blir så låg som möjligt utefter de förutsättningar som råder just då. Machine learning kan också användas för planering av underhåll så som rengöring av skrov eller propeller, skador på propellern kan också identifieras, m.m. Exempel på andra tillämpningar är rutt- och hastighetsoptimering med avseende på väder, sjögeografi, logistiska förutsättningar i transportkedjan såsom dynamisk ”omplanering” via s.k. prediktiv analys m.m.

Bidraget till omställningen kommer också mer direkt genom exempelvis utveckling av styr- och reglersystem och -komponenter som möjliggör kombination av utsläppsfria och konventionella drifttekniker i hybridsystem. Den sociala hållbarheten berörs inom området främst genom de nya möjligheter för ökad sjösäkerhet som i bästa fall följer av bättre navigationsstöd, kommunikation och styrning under drift, vilka förhoppningsvis minskar risken för incidenter, samt effektivare detektering och räddningsinsats när incidenter väl inträffar. Införandet av alla sådana tekniker måste dock ske utifrån ett användarcentrerat perspektiv, och med kontinuerlig validering mot den avsedda effekten eller nyttan. Exempelvis kan inget säkerhetssystem, oavsett om det är en flytväst eller ett navigationsstöd, bidra till ökad säkerhet om det förblir oanvänt på grund av krångligt handhavande.

Förmågan till prevention och räddningsinsats är kopplat till såväl liv och hälsa som miljö och egendom. Ur det ekonomiska hållbarhetsperspektivet är området relevant för ökad konkurrenskraft såväl med avseende på möjligheten att skapa effektivare tjänster med högre kvalitet och till lägre kostnad, som att skapa nya möjligheter för exportindustrin beträffande export av tjänster, produkter och innovationer som specifikt tas fram för att digitalisera och automatisera sjöfarten. 

Digitalisering och automatisering är relevant för, och påverkar, de övriga tre temaområdena Fartygsdesign, framdrivning och handhavande, Maritimt arbetsliv samt Effektiva transportsystem, styrmedel och affärsmodeller. Insatser inom övriga områden, på komponent- eller systemnivå eller för sin implementering, kommer att vara beroende av utvecklingen inom detta område. Till skillnad från förhållandet mellan de övriga tre temaområdena som består av eventuella målkonflikter/-synergier, så är utvecklingen av sjöfartens digitalisering och automatisering en möjliggörare och förutsättning för många av de innovationer som ryms inom de övriga tre temaområdena. Precis som inom flyg, järnvägs- och vägtrafiken är det heller inget självändamål med obemannade fartyg. Graden av automation till sjöss är redan relativt stor och digitalisering och uppkoppling kan snarare användas för ökad säkerhet, förbättrad miljö och ökad konkurrenskraft. Detta kan exemplifieras med utvecklingen inom digital infrastruktur och självlärande tekniker, styr- och reglersystem, optimering och realtidsutbyte av information, digital tillgänglighet och säkerhet eller trafikslagsövergripande trafikledning.

Initiativet Sea Traffic Management (STM) adresserar på ett holistiskt sätt: effektivitet, transportsäkerhet, sjösäkerhet, samhällssäkerhet, miljösäkerhet samt sjöfartens och sjötransportsystemets närmare integrering med andra trafikslag i ett sammanhållet transportsystem. STM är en svensk idé och ett koncept utvecklat i Europa men för en global tillämpning. För att tillgodose sjöfartens och Sjöfartsverkets behov har innovationsarbetet inspirerats av flygområdets SESAR med liknande fokus.

Grunden till STM är en digital infrastrukturmiljö som bygger på internationella standarder och gränssnitt som skapar förutsättningar för leverantörsoberoende informationsutbyte mellan system och aktörer. STM har designats för att leverera samhällsnytta och tjänster. Exempel på tjänster är ruttoptimeringstjänster, ruttinformationsutbyte fartyg till fartyg, förbättrad trafikövervakning, synkronisering av hamnanlöp och stöd för vintersjöfart.

STM-tjänster möjliggör för personal ombord och iland att fatta beslut baserade på realtidsinformation. Det möjliggör högre ankomstprecision, rätt anpassad fart, minskade administrativa bördor och ökat stöd till navigatörer, operatörer och andra användare. STM-projekten engagerar spetskompetenser i Sverige, Europa och världen inom akademi/institut, myndigheter och industri med koppling till sjöfarten och sjötransportområdet. För att driva STM vidare behöver Sverige fortsätta att vara ledande och utveckla konceptet och dess kringtjänster vidare på samma sätt som flyget vidareutvecklar SESAR.

Problemställningarna som adresseras inom digitaliserings- och automatiseringsområdet är mångfasetterade och tvärvetenskapliga. Flera olika typer av projekt kan bli aktuella, allt från teknisk utveckling av komponenter och system, tjänsteutveckling som kombinerar ny och befintlig teknik, nya logistiska och operativa lösningar och nya affärsmodeller som möjliggör så effektiv realisering av digitaliseringens och uppkopplade och/eller automatiserade fartygens potential som möjligt. I området ingår också utvärdering av effekterna, potentialen med olika tekniklösningar samt identifiering av hinder och möjliggörare för storskaligt genomslag för dessa tekniker även inom sjöfartsområdet.

Därvidlag är trafikslagsövergripande jämförande metoder tillämpbara. Även om utveckling av digitalisering och automatisering har varit snabb och accelererande, är den generella tekniska utvecklingen inom sjöfartsområdet historiskt eftersatt jämfört med övriga trafikslag. Trots de stora utmaningarna inom sjöfarten är graden av automation betydligt större inom flyg och för rälsbundna transporter, där det exempelvis finns åtskilliga förarlösa tunnelbanesystem. Inom vägtrafiken görs stora kommersiella investeringar i lösningar för automatiserad körning. Det görs först inom avlysta områden som i gruvor, godsterminaler och hamnar. Även avancerat förarstöd, automatiserade bromssystem och system för längre och tyngre fordonståg som kan föras fram i s.k. kolonnkörning utgör exempel på tekniker som redan idag införts eller är under införande, och som är kostnadsbesparande och/eller förbättrar trafiksäkerheten. Detta öppnar för innovationer som bygger på anpassning av teknik som redan finns eller utvecklas inom andra områden, för tillämpning inom sjöfartsområdet. För att framgångsrikt åstadkomma detta krävs ny, domänspecifik kunskap vid sidan av utveckling och anpassning av tekniker från andra områden. 

Lighthouse fokuserade tidigt på området genom förstudien Autonom säkerhet och har fortsatt med förstudien Positionering av fordon ombord RoRo-fartyg.samt VR till sjöss – VR-applikationer inom maritim industri som även kopplar till Maritimt Arbetsliv.

Förstudier

Startade 2024

Björn Samuelsson, Uppsala universitet Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Lucas Thomée, DNV Power System Planning Nordics Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Kristoffer Uulas, DNV Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Mikael Johansson, DNV Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
 Anders Hjort, IVL Svenska Miljöinstitutet Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Joakim Lundman, RISE Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.

Forskningsprojekt

Startade 2021

Startade 2020

Wengang Mao, Chalmers Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.

Innovationsprojekt

Startade 2024

Luis Sanchez-Heres, RISE Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Zhiyuan Li, Chalmers Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Alex Shiri, RISE Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.

Startade 2022

Rickard Bensow, Chalmers Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.
Erik Ytreberg, Chalmers Den här e-postadressen skyddas mot spambots. Du måste tillåta JavaScript för att se den.

Förstudier

Publicerad: 17 juni 2024
Publicerad: 27 april 2023
Publicerad: 13 december 2022
Publicerad: 09 november 2022
Publicerad: 04 mars 2022
Publicerad: 14 februari 2022
Publicerad: 31 augusti 2020
Publicerad: 07 maj 2020

Forskningsprojekt

Publicerad: 14 mars 2023

Inkomna idéer (kräver inloggning)